Rapid diagnostic tests for non-malarial febrile illness in the tropics

F. Chappuis1,2, E. Alirol1,2, V. d’Acremont3,4, E. Bottieau5 and C. P. Yansouni6

1) Division of International and Humanitarian Medicine, Geneva University Hospitals and University of Geneva, 2) Médecins Sans Frontières, Operational Centre Geneva, Geneva, Switzerland, 3) Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, 4) Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland, 5) Department of Clinical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium and 6) Divisions of Infectious Diseases and Medical Microbiology, J.D. MacLean Centre for Tropical Diseases, McGill University Health Centre, Montreal, Canada

Abstract

The recent roll-out of rapid diagnostic tests (RDTs) for malaria has highlighted the decreasing proportion of malaria-attributable illness in endemic areas. Unfortunately, once malaria is excluded, there are few accessible diagnostic tools to guide the management of severe febrile illnesses in low resource settings. This review summarises the current state of RDT development for several key infections, including dengue fever, enteric fever, leptospirosis, brucellosis, visceral leishmaniasis and human African trypanosomiasis, and highlights many remaining gaps. Most RDTs for non-malarial tropical infections currently rely on the detection of host antibodies against a single infectious agent. The sensitivity and specificity of host-antibody detection tests are both inherently limited. Moreover, prolonged antibody responses to many infections preclude the use of most serological RDTs for monitoring response to treatment and/or for diagnosing relapse. Considering these limitations, there is a pressing need for sensitive pathogen-detection-based RDTs, as have been successfully developed for malaria and dengue. Ultimately, integration of RDTs into a validated syndromic approach to tropical fevers is urgently needed. Related research priorities are to define the evolving epidemiology of fever in the tropics, and to determine how combinations of RDTs could be best used to improve the management of severe and treatable infections requiring specific therapy.

Keywords: African trypanosomiasis, brucellosis, dengue, fever, leptospirosis, rapid diagnostic tests, tropics, typhoid, visceral leishmaniasis

Introduction

The recent roll-out of rapid diagnostic tests (RDTs) for malaria has highlighted the decreasing proportion of malaria-attributable illness in endemic areas [1–4], and that the proportion of patients evaluated for fever suffering from a condition other than malaria is likely to continue increasing with time [5–8]. Unfortunately, once malaria is excluded, there are few accessible diagnostic tools to guide the management of severe febrile illnesses in low resource settings. Making matters worse, very little epidemiological data underpins clinicians’ assessment of prior probability in vast areas of Africa and Asia. However, wherever systematically studied, various non-malarial infections have been found to be major causes of febrile syndromes in tropical settings, such as relapsing fever [9], leptospirosis [10,11], rickettsial infection [12], dengue [13] or typhoid fever [14]. Such infections can be severe and most are treatable with specific therapy, but often clinically indistinguishable without confirmatory tests.

Based on the successful contribution of RDTs to malaria and HIV diagnosis, several point-of-care assays and RDTs designed for peripheral health facilities have been or are being developed for other tropical infections to improve patient care and epidemiological surveillance. The purpose of this article is to review currently available RDTs for the individual case-management of non-malarial tropical infections presenting with acute fever.

Corresponding author: F. Chappuis, Division of International and Humanitarian Medicine, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 6, 1211 Geneva 14, Switzerland
E-mail: francois.chappuis@hcuge.ch
or persistent fever. Priority has been given to RDTs detecting potentially severe illnesses of proven or suspected epidemiological importance, requiring specific management, for which 'immediate' diagnosis would be most useful. In this review, we will not focus on RDTs developed for febrile illnesses with predominantly focal symptoms, such as respiratory or diarrhoeal infections.

For this review, RDTs are defined as any test yielding results within minutes and that can be performed in health centres with little infrastructure or trained personnel, preferably without electricity. These are nearly all immunoassays, in various formats. New generations of such tests are increasingly single-step lateral flow assays (immunochromatographic tests in the form of a dipstick or cassette), which offer technical and operational advantages over older formats such as latex agglutination kits, flocculation assays and vertical flow-through assays [15–17].

Diseases

The epidemiological, clinical and reference diagnostic features of the diseases presented below are summarized in Table 1.

Dengue and chikungunya
The retrospective nature of classical serological tests to confirm dengue does not help clinicians to manage acutely ill patients (Table 1). The new combined RDTs that detect both IgM/IgG and the NS1 antigen provide immediate results and are able to diagnose dengue at different points in time after initiation of symptoms (Table 2).

The NS1 antigen is highly specific and detectable in serum from days 1 to 9 after fever onset [18,19]; its sensitivity depends on the type of test used and the time since onset of symptoms (it declines in parallel with viraemia), and is higher in primary than secondary dengue [20–22]. Tests detecting specific IgM antibodies are generally sensitive for diagnosing dengue, but not in the first days of fever. In a study among travellers in Israel, IgM became detectable between days 4 and 8 of fever [23]. Tests that combine detection of NS1 and IgM can therefore diagnose dengue throughout the febrile illness. The sensitivity of combined NS1/antibody tests was 76–93% in six recent studies conducted in endemic areas (Table 2). Sensitivity was even higher (96%) among travellers, who are more likely to present with primary dengue [24]. Whereas specificity of the NS1 band is very high (~95% in most studies), specificity of the IgM band is sometimes lower in endemic areas due to cross-reactivity with other pathogens, mainly Chikungunya virus [25]. Only two combined NS1/antibody RDTs that have been evaluated in endemic areas are commercially available: RDT from Panbio (Inverness Medical Innovations, Brisbane, Australia), presently available in two separate cassettes (Panbio Dengue Early Rapid™, detecting NS1, and Panbio Dengue Duo Cassette™, detecting IgM/IgG), and the SD Bioline Dengue Duo™ (Standard Diagnostics, Kionggi, Korea), detecting both NS1 and IgM/IgG in two cassettes bonded together.

Chikungunya is an emerging alphavirus with wide geographical distribution [26]. RDTs based on IgM detection have been recently developed with limited field validation. Sensitivity was poor in the first week of illness but increased afterwards [27,28].

Enteric fever
The diagnosis of enteric fever is notoriously difficult, owing to its non-specific clinical presentation, a very low number of circulating bacteria in blood [29], and antigenic similarity to other members of the Enterobacteraceae [30]. The Widal test is a simple serological assay detecting antibodies against lipopolysaccharide (LPS; O) and flagellar (H) antigens of S. Typhi. Introduced over 115 years ago, this test continues to be widely used despite its unacceptably low accuracy [31–35].

Numerous RDTs based on host antibody detection have attempted to improve diagnostic performance, with limited success (Table 3). The IDL TUBEX TF™ (IDL Biotech AB, Bromma, Sweden) is a semi-quantitative colorimetric test detecting anti-0:9 IgM antibodies. Results are available within 3 min at room temperature and require minimal laboratory supplies. The Typhidot™ platform (Reszon Diagnostics International Sdn. Bhd., Selangor, Malaysia) qualitatively detects antibodies to the outer membrane protein (Vi; OMP) and is commercialized in three forms: the Typhidot™ detects either IgM or IgG antibody via an enzyme immunoblot assay and yields qualitative results in 60 min; the Typhidot Rapid IgM™ and Typhidot Rapid IgM/IgG Combo™ are immunochromatographic (ICT) cassettes featuring separate lines for IgG and IgM and yield results in 15 min. Other commercialized RDTs include the RTI LPS IgM ICT™ (Royal Tropical Institute, Amsterdam, the Netherlands; now produced by LifeAssay Diagnostics Ltd) detecting anti-LPS (O antigen) IgM, and the Typhoid Rapid Test™ (SD Bioline, Kionggi, Korea) detecting total IgM/IgG against an unspecified S. Typhi antigen. All of these RDTs detect antibodies against antigens selected from S. Typhi isolates. TUBEX and Typhidot are non-reactive with sera from S. Paratyphi infections [36]. Conversely, the RTI LPS IgM ICT is equally sensitive for infections from S. Typhi and S. Paratyphi [37].

In general, the sensitivity of serological tests is unsatisfactory initially and increases with longer duration of illness. In Indonesia, the sensitivity of Widal and the RTI LPS IgM ICT increased from 43–48% at days 4–6 of fever to 90–100% after more than 9 days, compared with positive blood cultures [37]. The reported specificity of RDTs is affected by imperfect sensitivity of reference standard blood cultures, and rises from
TABLE 1. Epidemiology, clinical features and reference diagnostic tests of dengue fever, enteric fever, leptospirosis, brucellosis, human African trypanosomiasis and visceral leishmaniasis

<table>
<thead>
<tr>
<th>Disease</th>
<th>Burden and epidemiology</th>
<th>Clinical features</th>
<th>Reference diagnostic testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dengue</td>
<td>Annual global incidence estimated at 50–100 million cases. 500,000 people with severe dengue require hospitalization each year, especially children, of whom about 2.5% die. Dengue is found in tropical and sub-tropical climates worldwide, mostly in urban and semi-urban areas. About half of the world’s population is now at risk. Transmitted by Aedes mosquitoes (e.g. A. aegypti). No animal reservoir.</td>
<td>Suspect case defined by acute fever with at least two of the following: headache, retro-orbital pain, myalgia, arthralgia, nausea, vomiting, swollen glands or rash. Symptoms usually last for 2–7 days. Severe dengue is characterized by shock, respiratory distress, severe bleeding or organ impairment. Warning signs occur 3–7 days after the first symptoms.</td>
<td>Isolation of the dengue virus from serum, plasma, leucocytes or tissues. Demonstration of a fourfold or greater rise in reciprocal IgG or IgM antibody titres to one or more dengue virus antigens in paired serum samples. Detection of viral genomic sequences in tissue, serum or CSF samples by PCR.</td>
</tr>
<tr>
<td>Enteric fever (Salmonella Typhi/Paratyphi)</td>
<td>Annual global incidence estimated at 27 million cases (22 million S. Typhi, 5 million S. Paratyphi) with 216,150 deaths [80]. Occurs worldwide in low/middle income countries, particularly south/southeast Asia. African burden less clear. Under-reporting and diagnostic difficulty make precise estimates difficult.</td>
<td>Clinical spectrum ranging from fever and malaise to severe complications such as intestinal perforation and encephalopathy. Fever generally increases abruptly after first week of illness in untreated patients. Splenomegaly and fleeting rash may occur. Diarrhoea in less than 50% of cases.</td>
<td>Recovery of Salmonella Typhi/Paratyphi from blood or bone marrow. Recovery of intestinal tract may represent chronic carriage. Sensitivity <100% for all specimens, depending on many factors. Combination of several samples (blood, BM, urine, gastric aspirates, rose spots) increases yield [81]. Drawing sufficient volume of blood (i.e. >20–30 mL) is the most important factor affecting the yield of blood cultures [29,82].</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>Zoonotic disease caused by bacteria of the genus Leptospira. Worldwide distribution but true disease burden unknown. Most common in urban slums and rural tropics. Epidemics often seen during flooding. Main transmission to humans by exposure to water and soil contaminated by the urine of infected animals (e.g. rodents) [83].</td>
<td>Wide spectrum from asymptomatic to fulminant disease. Fever, malaise, headaches, severe myalgias, conjunctival suffusion, anorexia, nausea, vomiting followed by asptic meningitis in up to 25% cases. Severe forms: jaundice, renal failure and haemorrhage (Well’s disease) and/or respiratory distress</td>
<td>Culture from blood or other body fluids has low sensitivity and very slow growth rate. The microscopic agglutination test (MAT) detects serogroup-specific IgG and IgM antibodies. Paired sera required for definitive diagnosis (seroconversion or fourfold increase in titres). Conventional and real-time PCR in blood or serum useful for early diagnosis, despite limited sensitivity [51,84].</td>
</tr>
<tr>
<td>Brucellosis (B. melitensis, & abortus, B. suis)</td>
<td>Leading zoonosis in the world, with annual global incidence of ~500,000 cases, and prevalence >100,000 in some countries [85]. Transmitted by contact with fluids from infected animals or derived food products. Reservoir is domestic livestock, differs by Brucella species. Worldwide occurrence, highest in Mediterranean basin, Indian subcontinent, Mexico and Central and South America.</td>
<td>Extremes wide clinical spectrum. Acute disease presents as fever ± focal symptoms (e.g. arthritis). Chronic disease (e.g. abscess) may be more difficult to diagnose. Treatment requires at least 6 weeks of dual drug therapy, and relapses are frequent.</td>
<td>Recovery of Brucella species in culture of any body fluid or tissue. Blood or bone marrow have highest yield, and may require prolonged incubation (up to 3 weeks) if manual culture systems are used.</td>
</tr>
<tr>
<td>Human African trypanosomiasis (HAT)</td>
<td>Exclusively in Africa; due to Trypanosoma brucei gambiense or T. b. rhodesiense. T. b. gambiense: Foci in rural areas of west and central Africa; most prevalent in Democratic Republic of Congo, Central African Republic and southern Sudan (since 2009, less than 10,000 cases reported annually but proportion of under-reported cases unknown [86]). T. b. rhodesiense: Foci in rural areas of east and southern Africa; less than 200 cases reported in 2009 [86].</td>
<td>First (early) haematolymphatic stage: intermittent fever, headache, pruritus, lymphadenopathy. Second (late) menival-encephalitic stage: sleep disturbances and neuropsychiatric disorders. More severe symptoms and faster evolution to the meningoencephalic stage for T. b rhodesiense; fatal if left untreated.</td>
<td>Microscopic examination of trypanosomes in body fluid (lymph, blood or cerebrospinal fluid (CSF)). Need for concentration methods for T. b. gambiense HAT (e.g. microhaematocrit centrifugation technique, mini-anion-exchange centrifugation technique) because of scanty parasites. Diagnosis of second stage HAT based on presence of trypanosomes and/or more than 5 white blood cells per μL in CSF [58].</td>
</tr>
<tr>
<td>Viscerai leishmaniasis</td>
<td>Systemic protozoan infection due to Leishmania donovani in South Asia and East Africa or L. infantum in Latin America and the Mediterranean region. 200,000–400,000 cases occur annually in 70 countries. The five most affected countries are India, Bangladesh, Sudan, South Sudan and Ethiopia [87]. Fatal if left untreated.</td>
<td>Prolonged fever, malaise, weight loss, epistaxis, cough, enlarged liver and spleen, lymphadenopathies, progressive anaemia, concomitant infections (e.g. pneumonia).</td>
<td>Microscopic examination of Leishmania amastigotes forms in aspirates from lymph node, bone marrow or spleen. Sensitivity ~90% only with spleen aspirate examination but risk of major bleeding ~0.1%. Sensitivity improved by culture or PCR. Various serological methods with high sensitivity and specificity: ELISA, IF, Western blot, DAT [61,88].</td>
</tr>
</tbody>
</table>

46–80% when clinical suspects with negative blood cultures are used as controls, to 83–100% when controls have an established alternative diagnosis (Table 3). In addition, numerous other host factors may affect the specificity of antibody-detection tests. Thus, the modest accuracy of available RDTs for early enteric fever precludes their routine use, except perhaps in the setting of a high pre-test probability, such as during outbreaks [14]. ©2013 The Authors

Clinical Microbiology and Infection ©2013 European Society of Clinical Microbiology and Infectious Diseases. CMI
The detection of S. Typhi antigens in clinical samples has been shown to have comparable accuracy to antibody-detection tests [38–40]. A valuable alternative use for putative RDTs based on such assays could be the rapid identification of S. Typhi/Paratyphi in culture media, greatly simplifying blood cultures in basic laboratories.

Leptospirosis

The Lepto lateral flow™ has been developed by the Royal Tropical Institute (KIT, Amsterdam, the Netherlands) [41]. It is based on the binding of specific IgM antibodies to a whole-cell antigen prepared from the non-pathogenic Patoc 1 strain. In the Andaman Islands, India, its sensitivity increased with the duration of illness, from 34% on days 2–3 to 63% on days 4–5 and 85% at the end of the first week, with high specificity (94%) [42]. It is now commercialized as Test-it™ Leptospira (LifeAssay Diagnostics).

Most publications of the late 1990s and early 2000s evaluated earlier formats of RDTs developed by the KIT or commercial RDTs that are, to our knowledge, no longer available [43–48].

The persistence of anti-leptospiral IgM after infection and frequent exposure to non-pathogenic leptospiries (e.g. during farming) are likely to explain the limited specificity of ELISA and RDTs using whole-cell antigens, as reported by some [48–50]. Diagnostic accuracy could theoretically be improved with assays using more specific antigens [51]. A novel Dual Path Platform™ (DPP) assay (Chembio Diagnostics Systems, Medford, USA) incorporates recombinant leptospiral immunoglobulin-like proteins as antigens. In a phase 2 study conducted in Latin America, the assay achieved sensitivity of 85% and 64% in severe and mild leptospirosis, respectively. Like the other serological tests, sensitivity increased with duration of symptoms. Specificity was high (>93%) in various control groups but moderate (86%) in healthy slum residents, suggesting some background immunity also against this antigen in highly exposed populations [52].

The detection of leptospiral antigen in the blood or urine is a promising approach, as it may allow for earlier diagnosis (i.e. before the appearance of specific IgM) and therefore prompter treatment to prevent late clinical complications [53].

Brucellosis

Serological tests detecting antibodies to Brucella spp. antigens are the most frequently used modality for acute and chronic

Table 2. Selected studies evaluating RDTs for dengue fever* (adapted from Blacksell et al. [89])

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Assay</th>
<th>Country</th>
<th>Sample timing (days of illness)</th>
<th>Reference comparator</th>
<th>Antigen or antibody detected</th>
<th>Sensitivity% (95% CI)</th>
<th>Specificity% (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shu et al [90]</td>
<td>2009</td>
<td>BioRad STRIP</td>
<td>Taiwan</td>
<td>1–7 (median: 2)</td>
<td>PCR or paired ELISA</td>
<td>NSI</td>
<td>77.3 (0.54–0.92)</td>
<td>100</td>
</tr>
<tr>
<td>Hang et al. [91]</td>
<td>2009</td>
<td></td>
<td>Vietnam</td>
<td>1–6</td>
<td>PCR or paired ELISA</td>
<td>NSI</td>
<td>72.8 (61.8–0.83)</td>
<td>100 (91.6–100)</td>
</tr>
<tr>
<td>Ramírez et al. [93]</td>
<td>2009</td>
<td></td>
<td>Venezuela</td>
<td>2–6</td>
<td>PCR or paired ELISA</td>
<td>NSI</td>
<td>98.9 (96.8–100)</td>
<td>90.6 (85.9–95.7)</td>
</tr>
<tr>
<td>Lima et al. [94]</td>
<td>2010</td>
<td></td>
<td>Brazil</td>
<td>1–6</td>
<td>Combinations of viral culture, PCR, NSI Ag ELISA</td>
<td>NSI</td>
<td>67.8 (57.4–76.7)</td>
<td>94.4 (80.9–99.4)</td>
</tr>
<tr>
<td>Tricou et al. [95]</td>
<td>2010</td>
<td></td>
<td>Vietnam</td>
<td>1–6</td>
<td>PCR or paired ELISA</td>
<td>Viral culture, PCR or paired ELISA</td>
<td>61.6 (55.2–67.8)</td>
<td>100 (93.8–100)</td>
</tr>
<tr>
<td>Osorio et al. [96]</td>
<td>2010</td>
<td></td>
<td>Colombia</td>
<td>2–7 (median: 4)</td>
<td>PCR or paired ELISA</td>
<td>Viral culture, PCR or paired ELISA</td>
<td>57.7 (47.6–67.3)</td>
<td>95.3 (84.2–99.4)</td>
</tr>
<tr>
<td>Blacksell et al. [25]</td>
<td>2011</td>
<td></td>
<td>Sri Lanka</td>
<td>Median 5; IQR 2–7</td>
<td>AFRIMS ELISA paired samples</td>
<td>NSI</td>
<td>58.6 (48.2–68.4)</td>
<td>98.8 (95.6–99.9)</td>
</tr>
<tr>
<td>Tricou et al. [95]</td>
<td>2010</td>
<td></td>
<td>Vietnam</td>
<td>1–6</td>
<td>PCR or paired ELISA</td>
<td>Virus isolation, PCR, paired ELISA</td>
<td>62.4 (56.1–68.5)</td>
<td>100 (93.8–100)</td>
</tr>
<tr>
<td>Wang and Sekaran [97]</td>
<td>2010</td>
<td>SD Bioline</td>
<td>Malaysia</td>
<td>1–15</td>
<td>PCR or paired ELISA</td>
<td>Virus isolation, PCR, paired ELISA</td>
<td>65.4 (58.5–72.3)</td>
<td>98.8 (96.2–100)</td>
</tr>
<tr>
<td>Osorio et al. [96]</td>
<td>2010</td>
<td></td>
<td>Colombia</td>
<td>2–7 (median: 4)</td>
<td>PCR or paired ELISA</td>
<td>Viral culture, PCR or paired ELISA</td>
<td>51 (44.1–57.7)</td>
<td>96.7 (90.8–99.3)</td>
</tr>
<tr>
<td>Blacksell et al. [25]</td>
<td>2011</td>
<td></td>
<td>Sri Lanka</td>
<td>Median 5; IQR 2–7</td>
<td>Paired ELISA</td>
<td>NSI</td>
<td>48.5 (38.5–58.7)</td>
<td>99.4 (96.6–100)</td>
</tr>
<tr>
<td>Fry et al. [98]</td>
<td>2011</td>
<td></td>
<td>Vietnam</td>
<td>1–5 (84.5% < 5)</td>
<td>Paired ELISA</td>
<td>NSI</td>
<td>69.2 (62.8–75.6)</td>
<td>96% (92.2–99.8)</td>
</tr>
<tr>
<td>Blacksell et al. [25]</td>
<td>2011</td>
<td></td>
<td>Malaysia</td>
<td>1–15 (70% ≤ 5)</td>
<td>Paired ELISA</td>
<td>NSI</td>
<td>68.7 (61.8–76.1)</td>
<td>96.7 (82.8–99.9)</td>
</tr>
<tr>
<td>Wang and Sekaran [97]</td>
<td>2010</td>
<td>SD Bioline</td>
<td>Malaysia</td>
<td>1–15</td>
<td>Virus isolation, PCR, rising titre in a paired sample using MAC ELISA</td>
<td>IgM</td>
<td>58.6 (48.2–68.4)</td>
<td>92.5 (87.3–96.1)</td>
</tr>
<tr>
<td>Blacksell et al. [25]</td>
<td>2011</td>
<td></td>
<td>Sri Lanka</td>
<td>Median 5; IQR 2–7</td>
<td>Paired ELISA</td>
<td>IgM</td>
<td>79.2 (70.5–87.2)</td>
<td>89.4 (83.5–93.7)</td>
</tr>
<tr>
<td>Blacksell et al. [25]</td>
<td>2011</td>
<td></td>
<td>Sri Lanka</td>
<td>Median 5; IQR 2–7</td>
<td>Paired ELISA</td>
<td>IgM</td>
<td>70.7 (60.7–79.4)</td>
<td>80.0 (73.0–85.9)</td>
</tr>
<tr>
<td>Blacksell et al. [25]</td>
<td>2011</td>
<td></td>
<td>Sri Lanka</td>
<td>Median 5; IQR 2–7</td>
<td>Paired ELISA</td>
<td>IgM</td>
<td>72.7 (62.9–81.2)</td>
<td>73.8 (66.2–80.4)</td>
</tr>
<tr>
<td>Blacksell et al. [25]</td>
<td>2011</td>
<td></td>
<td>Sri Lanka</td>
<td>Median 5; IQR 2–7</td>
<td>Paired ELISA</td>
<td>IgM</td>
<td>79.8 (70.5–87.2)</td>
<td>46.3 (38.3–54.3)</td>
</tr>
<tr>
<td>Tricou et al. [95]</td>
<td>2010</td>
<td>SD Bioline</td>
<td>Vietnam</td>
<td>1–6</td>
<td>PCR or paired ELISA</td>
<td>NSI/IgM</td>
<td>75.5 (69.6–80.8)</td>
<td>100 (93.8–100)</td>
</tr>
<tr>
<td>Wang and Sekaran [97]</td>
<td>2010</td>
<td></td>
<td>Malaysia</td>
<td>1–15</td>
<td>Virus isolation, PCR, paired ELISA</td>
<td>IgM</td>
<td>93.2 (87.2–99.9)</td>
<td>99.7 (88.7–99.9)</td>
</tr>
<tr>
<td>Osorio et al. [96]</td>
<td>2010</td>
<td></td>
<td>Colombia</td>
<td>2–7 (median: 4)</td>
<td>Paired ELISA</td>
<td>NSI/IgM</td>
<td>83.7 (78.4–88.1)</td>
<td>97.9 (88.7–99.9)</td>
</tr>
<tr>
<td>Blacksell et al. [25]</td>
<td>2011</td>
<td></td>
<td>Sri Lanka</td>
<td>Median 5; IQR 2–7</td>
<td>Paired ELISA</td>
<td>NSI/IgM</td>
<td>88.7 (84.0–93.3)</td>
<td>98.8 (96.3–100)</td>
</tr>
<tr>
<td>Fry et al. [98]</td>
<td>2011</td>
<td></td>
<td>Malaysia</td>
<td>1–15 (70% ≤ 5)</td>
<td>Paired ELISA</td>
<td>NSI/IgM</td>
<td>92.9 (83.9–97.1)</td>
<td>88.8 (82.8–93.2)</td>
</tr>
<tr>
<td>Blacksell et al. [25]</td>
<td>2011</td>
<td></td>
<td>Sri Lanka</td>
<td>Median 5; IQR 2–7</td>
<td>Paired ELISA</td>
<td>NSI/IgM</td>
<td>89.9 (85.2–92.8)</td>
<td>Not reported</td>
</tr>
</tbody>
</table>

Studies were included if: (i) study undertaken in a dengue endemic country; (ii) test detecting either NS1 or IgM or both; (iii) reference method including at least PCR or ELISA on paired samples when evaluating NS1 and at least ELISA on paired samples when evaluating IgM; (iv) sample timing described; (v) study published from 2009 onwards.
The Rose Bengal test (RBT) is a rapid slide-agglutination assay that uses a stained B. abortus suspension to detect anti-Brucella antibodies. It has long been used as a screening test in low-resource settings, but confusion about its diagnostic accuracy led the WHO to recommend that positive RBT results be confirmed by another method. Concerns have focused on perceived low sensitivity for chronic infection, cross-reactivity with other pathogens and the prozone effect. However, the RBT was recently assessed in a large study using stored samples from culture-confirmed cases (n = 208) and controls with other illnesses (n = 1159) [54]. RBT results were highly concordant with other serological methods, except when positive titres were lower than 1:8, for which confirmation using another test appears necessary.

An RDT has recently been developed that could allow testing at the point of care. The Lateral Flow immunochromatography assay™ (LFiC; KIT) detects IgM and IgG to the polysaccharide section of the Brucella S. lipopolysaccharide (S-LPS; O) antigen. The test is simple, uses fingerprick blood, does not require refrigeration, and has shown sensitivity of 96–100% and specificity reaching 99% when used for disease confirmation, compared with positive blood cultures [55,56], and high concordance with standard serological methods [54,57]. Further studies are needed to define LFiC performance in different human epidemiological and clinical settings (e.g. relapse). The LFiC is now produced by LifeAssay Diagnostics Ltd.

Human African trypanosomiasis

For decades, the card agglutination test for trypanosomiasis (CATT) has been used for screening and diagnosis of T. b. gambiense HAT. Although not an RDT sensu stricto (it requires electricity and other equipment), it can be performed in remote settings. Its diagnostic accuracy (sensitivity, 87–98% on undiluted whole blood; specificity, 95%) has been evaluated in the context of mass screening of predominantly asymptomatic individuals [58], but never in clinically suspect patients (e.g. with persistent fever or neurological disorders). A new and more practical format (CATT-D10), with similar performance, has been developed to screen a smaller number of patients in peripheral health facilities [59]. Two lateral flow immunochromatographic RDTs for the serodiagnosis of T. b. gambiense HAT have reached advanced stages of development: (i) the ‘Immunochromato-

Table 3. Selected studies evaluating RDTs for enteric fever

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Assay</th>
<th>Country</th>
<th>Sample timing (days of illness)</th>
<th>True positive definition</th>
<th>True negative definition</th>
<th>Sensitivity% (95% CI)</th>
<th>Specificity% (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keddy et al. [99]</td>
<td>2011</td>
<td>IDL TUBEX® TF</td>
<td>South Africa</td>
<td>Not reported</td>
<td>Automated blood culture</td>
<td>Febrile patients with</td>
<td>73 (60.3–83.4)</td>
<td>69 (49.2–84.7)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>TyphiDot (IgM)</td>
<td>Tanzania</td>
<td>Not reported</td>
<td>Automated blood culture</td>
<td>Negative blood cultures</td>
<td>79 (52.81)</td>
<td>89 (81.94)</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>LFI C (IgM)</td>
<td>Bangladesh</td>
<td>Median 3 (range 1–30)</td>
<td>Automated blood culture</td>
<td>Manual blood culture</td>
<td>94.7 (86.98)</td>
<td>80.4 (71.87)</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>Vietnam</td>
<td>Median 11</td>
<td>(range 4–55)</td>
<td>Blood culture (not specified)</td>
<td>Manual blood culture and BACTEC</td>
<td>56 (47.66)</td>
<td>88 (82.94)</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>Vietnam</td>
<td>Median 12</td>
<td>(range 7–17)</td>
<td>Blood culture (not specified)</td>
<td>Manual blood culture and BACTEC</td>
<td>78 (65.88)</td>
<td>94 (71.100)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>TyphiDot (IgM)</td>
<td>South Africa</td>
<td>Not reported</td>
<td>Automated blood culture</td>
<td>Blood culture (Bac-T Alert)</td>
<td>87 (66.87)</td>
<td>76 (63.89)</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>LFI C (IgM)</td>
<td>Philippines</td>
<td>Not reported</td>
<td>Automated blood culture</td>
<td>Manual blood culture</td>
<td>75.0 (61.86–80)</td>
<td>60.7 (40.6–78.5)</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>LFI C (IgM)</td>
<td>India</td>
<td>Median 4 (range 3–60)</td>
<td>Automated blood culture</td>
<td>Manual blood culture and BACTEC</td>
<td>55 (43.66)</td>
<td>65 (55.74)</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>Vietnam</td>
<td>Median 11</td>
<td>(range 4–55)</td>
<td>Automated blood culture</td>
<td>Manual blood culture and BACTEC</td>
<td>47 (37.58)</td>
<td>83 (71.94)</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>TyphiDot (IgG)</td>
<td>South Africa</td>
<td>Not reported</td>
<td>Automated blood culture</td>
<td>Blood culture (Bac-T Alert)</td>
<td>79 (66.88)</td>
<td>89 (66.98)</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>LFI C (IgM)</td>
<td>Philippines</td>
<td>Not reported</td>
<td>Automated blood culture</td>
<td>Manual blood culture and BACTEC</td>
<td>69.2 (54.9–81.3)</td>
<td>70.4 (49.8–86.2)</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>TyphiDot (IgM)</td>
<td>Bangladesh</td>
<td>Median 3 (range 1–30)</td>
<td>Automated blood culture</td>
<td>Blood culture (Bac-T Alert)</td>
<td>73 (62.83)</td>
<td>46 (36.56)</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>LFI C (IgM)</td>
<td>Indonesia</td>
<td>Median 7 (range 25–75IQR)</td>
<td>Manual blood culture</td>
<td>Blood culture neg and other bacteraemia</td>
<td>67 (51.81)</td>
<td>54 (33.74)</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>SD Bioline</td>
<td>Philippines</td>
<td>Not reported</td>
<td>Manual blood culture</td>
<td>Blood culture and BACTEC</td>
<td>100 (98.5–100)</td>
<td>99 (97.5–100)</td>
</tr>
</tbody>
</table>

aStudies were included if (i) blood or bone marrow cultures were used as the reference standard, (ii) enteric fever clinical suspects were used for specificity calculations, (iii) 95% confidence intervals around performance estimates were given or calculable from presented data, and (iv) time elapsed since the onset of fever was indicated, because host antibody responses and test sensitivity are time-dependent [37]. The results from Keddy et al. and Ley et al. [99,100] are reported despite the lack of timing data because they are the only published high-quality studies in African populations. Results from Kawano et al. [102] are reported despite the lack of timing data because they is the only study evaluating the RDT from SD Bioline.

©2013 The Authors

Clinical Microbiology and Infection ©2013 European Society of Clinical Microbiology and Infectious Diseases, CMI
graphic HAT-RDT™, manufactured by Standard Diagnostics, in collaboration with the Foundation for Innovative New Diagnostics (FIND) and (ii) the ‘Gambiense-Sero-K-set’ developed by Coris BioConcept (Gembloux, Belgium) in collaboration with the Institute of Tropical Medicine, Antwerp. Results of phase 2 evaluations should be published soon for both RDTs, while phase 3 studies among clinically suspect patients are ongoing.

For T. b. rhodesiense HAT, there is no RDT in development. Diagnosis is, however, straightforward with classic microscopy, because parasite load is usually high in the blood during clinical illness.

Visceral leishmaniasis

The first RDT detecting antibodies against rK39, a recombinant antigen from *Leishmania infantum*, was evaluated in India in the late 1990s [60]. A meta-analysis of 13 rK39 RDT evaluation studies revealed an overall sensitivity of 93.7% and a specificity of 95.3%, with a trend towards decreased sensitivity in East Africa [61]. This trend was confirmed in recent studies, particularly among HIV co-infected patients [62–64]. Only two rK39 RDTs have been sufficiently validated for use in clinical practice, the Kalazar Detect™ from Inbios, Seattle, WA, USA, and the IT-LEISH™ from BioRad, Marnes-la-Coquette, France (formerly from DiaMed AG, Switzerland). Both can confirm VL, provided that they are applied on strictly-defined clinically suspect patients (e.g. ≥ 2 weeks fever and splenomegaly), but a negative rK39 RDT test result confidently rules out VL in South Asia only, highlighting the need for the development of a more sensitive RDT for East Africa. Newly developed RDTs based on detection of antibodies against rK28, a synthetic polyprotein, showed promising sensitivity estimates (95.9–98.1%) in a limited number of VL patients in Sudan and Bangladesh [65].

As antibodies remain detectable for years after treatment [66], serological-based assays are useless to diagnose VL relapses. For this purpose, efforts are currently being made to transform an existing antigen detection test in urine (KAtex™, Kalon Biological Ltd, Guildford, UK) into a more practical lateral flow test.

Other febrile diseases

Rickettsial diseases are a large group of infections with worldwide (e.g. murine typhus) or limited (e.g. scrub typhus) distribution [67]. Diagnostic confirmation can sometimes be made clinically in the presence of a typical eschar (e.g. scrub typhus), but most often relies on the detection of specific antibodies, generally on paired samples. Serological RDTs have been developed and validated for scrub typhus only, with very variable sensitivity estimates (39–97%) [68–72]. Rapid diagnostic tests are in development for melioidosis, an infection due to *Burkholderia pseudomallei* that is a frequent cause of febrile illness and sepsis in southeastern Asia and northern Australia. Numerous species of *Borrelia* spp may cause relapsing fever, an underestimated cause of fever in some tropical areas [9]. Despite the low sensitivity of classic microscopy compared with molecular techniques [73], no RDT has been developed to improve diagnosis in remote settings.

Discussion

In many peripheral health facilities in the tropics, RDT-based diagnosis of malaria is nowadays straightforward. Unfortunately, once malaria is excluded, there are few accessible diagnostic tools to guide the management of myriad severe febrile illnesses [6]. This review summarizes the current state of RDT development for several key infections and highlights many remaining gaps.

Most RDTs for non-malarial tropical infections currently rely on the detection of specific antibodies against a single infectious agent. Antibodies usually take several days after the appearance of fever to be detectable in peripheral blood, which limits the sensitivity of serological RDTs in acute fever [42,52,68]. Their specificity can also be altered by cross-reactivity with other infectious agents, background seroprevalence in the healthy exposed population and long-term persistence of antibodies after infection [52,74]. The latter may also prevent the use of serological RDTs to monitor treatment response and/or to diagnose relapse [75]. Considering the above limitations, there is an urgent need to foster the development of sufficiently sensitive antigen-based RDTs, as successfully accomplished for malaria and dengue.

In many studies, evaluation of RDT accuracy is impaired by an imperfect reference standard (e.g. blood culture for typhoid fever, microscopic agglutination tests (MAT) for leptospirosis or bone marrow aspiration for VL), leading to over-estimation of RDT sensitivity and under-estimation of specificity. Optimizing the choice of reference standard (e.g. using a composite reference standard) or adjusting for the absence of reference standard (e.g. applying latent class analysis) should be strongly encouraged in all diagnostic studies evaluating the ‘true’ RDT performance [76,77].

In addition to being highly accurate, RDTs need to be affordable, user friendly, rapid and robust, equipment-free and delivered to end-users, as summarized in the ASSURED criteria [78]. Even if the ASSURED criteria are met, many potential obstacles to widespread correct use of RDTs and other point-of-curve tests remain, as recently reviewed [78,79]. A striking feature is the lack of current production...
of many validated RDTs, possibly reflecting the fragile commitment of manufacturers to maintaining the availability of such tests, and the lack of regulatory and financial conditions that could facilitate or incentivise such commitments. The advantages and pitfalls of RDTs in low resource settings are summarized in the Box.

Box: Advantages and pitfalls of RDTs in low-resource settings

Advantages of RDTs over conventional laboratory tests:
- Access to appropriate diagnosis-based management, i.e.
- Comparatively low skill required for use
- Minimal infrastructure requirements
- Low cost
- Rapid results in a clinically relevant time-frame
- Potentially increased standardization of care

Pitfalls and limitations of immunoassay-based RDTs:

Technical
- RDTs based on detection of host antibodies generally have low sensitivity in the first several days of disease – when treatment might be most desirable. Moreover, the accuracy of such tests is affected by host factors and prior infections.
- Despite having a broad range of operating and storage temperatures, antibodies used for RDT assembly may degrade in extreme environments.
- Inherent limits in sensitivity when conventional colorimetric detection is used. Inter-reader variability can be significant, especially for faint test lines.
- May be susceptible to the prozone phenomenon (i.e. falsely negative or borderline results due to an excess of either the antigen or the antibody of interest).
- Specificity may be severely decreased (i.e. false positives) in the presence of concomitant conditions that cause polyclonal hypergammaglobulinaemia.

Operational
- Training and quality assurance are essential; even the simplest RDTs can be improperly used or misinterpreted, and inaccurate results can harm patients and undermine their confidence in local medical services.
- Feasibility at the point-of-care: unlike conventional laboratory services, health workers using RDTs might assume responsibility for specimen collection and testing, as well as for quality control and documentation. This will become an organizational challenge as RDTs for an ever increasing list of diseases become available.
- User-interpretation of the signal, documentation and archiving of results: these may be addressed by battery-operated automated RDT readers, which digitally photograph RDT test strips, uniformly interpret the results, and archive standardized photos for subsequent quality assurance.
- One test = one disease: while microscopy and bacterial culture have the ability to detect multiple pathogens at once, including unsuspected ones, most existing RDTs only detect a single pathogen. This limits the usefulness of current RDTs in the management of some important clinical syndromes such as sepsis.

Current approaches to fever in low-resource settings are most often fragmented or rely on non-specific clinical data and empirical therapy. There is abundant evidence that this approach is harmful and that integrated diagnostic pathways for febrile illness are urgently needed [8]. In addition to the development of locally validated RDTs, research priorities are (i) filling the void of epidemiological knowledge in much of the tropics (to assess pre-test probability) and (ii) developing validated pathways combining key epidemiological and clinical features with the use of RDTs, either alone or in tailored panels, to better manage severe and treatable infections requiring specific therapy.

Acknowledgements

None.

Authors’ Contributions

FC structured and coordinated the writing of the manuscript and drafted several chapters. EA did an extensive search of the literature and reviewed the manuscript. VDA and EB drafted several chapters and reviewed the manuscript. CY coordinated with FC the writing of the manuscript and wrote several chapters.

Transparency Declaration

This work is supported by a grant from the European Commission under the Health Cooperation Work Programme of the 7th Framework Programme (FP7) to the NIDIAG consortium (www.nidiag.org). All authors declare that they have no competing interests.

References

62. Coleman RE, Sangkasuwon V, Suwanabun N et al. Comparative evaluation of selected diagnostic assays for the detection of IgG and