• Field challenges to measles elimination in the Democratic Republic of the Congo

      Coulborn, RM; Nackers, F; Bachy, C; Porten, K; Vochten, H; Ndele, E; Van Herp, M; Bibala-Faray, E; Cohuet, S; Panunzi, I (Elsevier, 2020-02-25)
      BACKGROUND: During a measles epidemic, the Ministry of Public Health (MOH) of the Democratic Republic of the Congo conducted supplementary immunization activities (2016-SIA) from August 28-September 3, 2016 throughout Maniema Province. From October 29-November 4, 2016, Médecins Sans Frontières and the MOH conducted a reactive measles vaccination campaign (2016-RVC) targeting children six months to 14 years old in seven health areas with heavy ongoing transmission despite inclusion in the 2016-SIA, and a post-vaccination survey. We report the measles vaccine coverage (VC) and effectiveness (VE) of the 2016-SIA and VC of the 2016-RVC. METHODS: A cross-sectional VC cluster survey stratified by semi-urban/rural health area and age was conducted. A retrospective cohort analysis of measles reported by the parent/guardian allowed calculation of the cumulative measles incidence according to vaccination status after the 2016-SIA for an estimation of crude and adjusted VE. RESULTS: In November 2016, 1145 children (6-59 months old) in the semi-urban and 1158 in the rural areas were surveyed. Post-2016-SIA VC (documentation/declaration) was 81.6% (95%CI: 76.5-85.7) in the semi-urban and 91.0% (95%CI: 84.9-94.7) in the rural areas. The reported measles incidence in October among children less than 5 years old was 5.0% for 2016-SIA-vaccinated and 11.2% for 2016-SIA-non-vaccinated in the semi-urban area, and 0.7% for 2016-SIA-vaccinated and 4.0% for 2016-SIA-non-vaccinated in the rural area. Post-2016-SIA VE (adjusted for age, sex) was 53.9% (95%CI: 2.9-78.8) in the semi-urban and 78.7% (95%CI: 0-97.1) in the rural areas. Post 2016-RVC VC (documentation/declaration) was 99.1% (95%CI: 98.2-99.6) in the semi-urban and 98.8% (95%CI: 96.5-99.6) in the rural areas. CONCLUSIONS: Although our VE estimates could be underestimated due to misclassification of measles status, the VC and VE point estimates of the 2016-SIA in the semi-urban area appear suboptimal, and in combination, could not limit the epidemic. Further research is needed on vaccination strategies adapted to urban contexts.
    • Field challenges to measles elimination in the Democratic Republic of the Congo

      Coulborn, RM; Nackers, F; Bachy, C; Porten, K; Vochten, H; Ndele, E; Van Herp, M; Bibala-Faray, E; Cohuet, S; Panunzi, I (Elsevier, 2020-03-17)
      BACKGROUND: During a measles epidemic, the Ministry of Public Health (MOH) of the Democratic Republic of the Congo conducted supplementary immunization activities (2016-SIA) from August 28-September 3, 2016 throughout Maniema Province. From October 29-November 4, 2016, Médecins Sans Frontières and the MOH conducted a reactive measles vaccination campaign (2016-RVC) targeting children six months to 14 years old in seven health areas with heavy ongoing transmission despite inclusion in the 2016-SIA, and a post-vaccination survey. We report the measles vaccine coverage (VC) and effectiveness (VE) of the 2016-SIA and VC of the 2016-RVC. METHODS: A cross-sectional VC cluster survey stratified by semi-urban/rural health area and age was conducted. A retrospective cohort analysis of measles reported by the parent/guardian allowed calculation of the cumulative measles incidence according to vaccination status after the 2016-SIA for an estimation of crude and adjusted VE. RESULTS: In November 2016, 1145 children (6-59 months old) in the semi-urban and 1158 in the rural areas were surveyed. Post-2016-SIA VC (documentation/declaration) was 81.6% (95%CI: 76.5-85.7) in the semi-urban and 91.0% (95%CI: 84.9-94.7) in the rural areas. The reported measles incidence in October among children less than 5 years old was 5.0% for 2016-SIA-vaccinated and 11.2% for 2016-SIA-non-vaccinated in the semi-urban area, and 0.7% for 2016-SIA-vaccinated and 4.0% for 2016-SIA-non-vaccinated in the rural area. Post-2016-SIA VE (adjusted for age, sex) was 53.9% (95%CI: 2.9-78.8) in the semi-urban and 78.7% (95%CI: 0-97.1) in the rural areas. Post 2016-RVC VC (documentation/declaration) was 99.1% (95%CI: 98.2-99.6) in the semi-urban and 98.8% (95%CI: 96.5-99.6) in the rural areas. CONCLUSIONS: Although our VE estimates could be underestimated due to misclassification of measles status, the VC and VE point estimates of the 2016-SIA in the semi-urban area appear suboptimal, and in combination, could not limit the epidemic. Further research is needed on vaccination strategies adapted to urban contexts.
    • Improving pediatric TB diagnosis in North Kivu (DR Congo), focusing on a clinical algorithm including targeted Xpert MTB/RIF on gastric aspirates

      Van Brusselen, D; Simons, E; Luendo, T; Luendo, T; Habarugira, D; Ngowa, J; Mitutso, NN; Moluh, Z; Steenssens, M; Seguin, R; et al. (BMC, 2020-05-14)
      Background The incidence of tuberculosis (TB) in the Democratic Republic of the Congo (DRC) is 323/100,000. A context of civil conflict, internally displaced people and mining activities suggests a higher regional TB incidence in North Kivu. Médecins Sans Frontières (MSF) supports the General Reference Hospital of Masisi, North Kivu, covering a population of 520,000, with an elevated rate of pediatric malnutrition. In July 2017, an adapted MSF pediatric TB diagnostic algorithm, including Xpert MTB/RIF on gastric aspirates (GAs), was implemented. The aim of this study was to evaluate whether the introduction of this clinical pediatric TB diagnostic algorithm influenced the number of children started on TB treatment. Methods We performed a retrospective analysis of pediatric TB cases started on treatment in the inpatient therapeutic feeding centre (ITFC) and the pediatric ward. We compared data collected in the second half (July to December) of 2016 (before introduction of the new diagnostic algorithm) and the second half of 2017. For the outcome variables the difference between the two years was calculated by a Pearson Chi-square test. Results In 2017, 94 GAs were performed, compared to none in 2016. Twelve percent (11/94) of samples were Xpert MTB/RIF positive. Sixty-eight children (2.9% of total exits) aged between 3 months and 15 years started TB treatment in 2017, compared to 19 (1.4% of total exits) in 2016 (p 0.002). The largest increase in pediatric TB diagnoses in 2017 occurred in patients with a negative Xpert MTB/RIF result, but clinically highly suggestive of TB according to the newly introduced diagnostic algorithm. Fifty-two (3.1%) children under five years old started treatment in 2017, as compared to 14 (1.3%) in 2016 (p 0.004). The increase was less pronounced and not statistically significant in older patients: sixteen children (2.6%) above 5 years old started TB treatment in 2017 as compared to five (1.3%) in 2016 (p 0.17). Conclusion After the introduction of an adapted clinical pediatric TB diagnostic algorithm, including Xpert MTB/RIF on gastric aspirates, we observed a significant increase in the number of children – especially under 5 years old – started on TB treatment, mostly on clinical grounds. Increased ‘clinician awareness’ of pediatric TB likely played an important role.