• Does community-wide water chlorination reduce hepatitis E virus infections during an outbreak? a geospatial analysis of data from an outbreak in Am Timan, Chad (2016–2017)

      Lenglet, A; Ehlkes, L; Taylor, D; Fesselet, JF; Nassariman, JN; Ahamat, A; Chen, A; Noh, I; Moustapha, A; Spina, A; et al. (IWA Publishing, 2020-06-02)
      Hepatitis E Virus (HEV) genotype 1 and 2 infect an estimated 20 million people each year, via the faecal-oral transmission route. An urban outbreak of HEV occurred in Am Timan, Chad, between September 2016 and April 2017. As part of the outbreak response, Médecins Sans Frontières and the Ministry of Health implemented water and hygiene interventions, including the chlorination of town water sources. We aimed to understand whether these water treatment activities had any impact on the number of HEV infections, using geospatial analysis of epidemiological and water treatment monitoring data. By conducting cluster analysis we investigated whether there were areas of particularly high and low infection risk during the outbreak and explored the reasons for this. We observed two high-risk spatial clusters of suspected cases and one high-risk cluster of confirmed cases. Our main finding was that confirmed HEV cases had a higher median number of days of exposure to unsafe water compared to suspected and non-confirmed cases (Kruskal-Wallis Chi Square: 15.5; p < 0.001). Our study confirms the mixed, but shifting, transmission routes during this outbreak. It also highlights the spatial and temporal analytical methods, which can be employed in future outbreaks to improve understanding of HEV transmission.
    • Does community-wide water chlorination reduce hepatitis E virus infections during an outbreak? A geospatial analysis of data from an outbreak in Am Timan, Chad (2016–2017)

      Lenglet, A; Ehlkes, L; Taylor, D; Fesselet, J-F; Nassariman, JN; Ahamat, A; Chen, A; Noh, I; Moustapha, A; Spina, A (IWA Publishing, 2020-06-02)
      Hepatitis E Virus (HEV) genotype 1 and 2 infect an estimated 20 million people each year, via the faecal-oral transmission route. An urban outbreak of HEV occurred in Am Timan, Chad, between September 2016 and April 2017. As part of the outbreak response, Médecins Sans Frontières and the Ministry of Health implemented water and hygiene interventions, including the chlorination of town water sources. We aimed to understand whether these water treatment activities had any impact on the number of HEV infections, using geospatial analysis of epidemiological and water treatment monitoring data. By conducting cluster analysis we investigated whether there were areas of particularly high and low infection risk during the outbreak and explored the reasons for this. We observed two high-risk spatial clusters of suspected cases and one high-risk cluster of confirmed cases. Our main finding was that confirmed HEV cases had a higher median number of days of exposure to unsafe water compared to suspected and non-confirmed cases (Kruskal-Wallis Chi Square: 15.5; p < 0.001). Our study confirms the mixed, but shifting, transmission routes during this outbreak. It also highlights the spatial and temporal analytical methods, which can be employed in future outbreaks to improve understanding of HEV transmission.
    • Learning from water treatment and hygiene interventions in response to a hepatitis E outbreak in an open setting in Chad

      Spina, A; Beversluis, D; Irwin, A; Chen, A; Nassariman, JN; Ahamat, A; Noh, I; Oosterloo, J; Alfani, P; Sang, S; et al. (IWA Publishing, 2018-04)
      In September 2016, Médecins Sans Frontières responded to a hepatitis E (HEV) outbreak in Chad by implementing water treatment and hygiene interventions. To evaluate the coverage and use of these interventions, we conducted a cross-sectional study in the community. Our results showed that 99% of households interviewed had received a hygiene kit from us, aimed at improving water handling practice and personal hygiene and almost all respondents had heard messages about preventing jaundice and handwashing. Acceptance of chlorination of drinking water was also very high, although at the time of interview, we were only able to measure a safe free residual chlorine level (free chlorine residual (FRC) ≥0.2 mg/L) in 43% of households. Households which had refilled water containers within the last 18 hours, had sourced water from private wells or had poured water into a previously empty container, were all more likely to have a safe FRC level. In this open setting, we were able to achieve high coverage for chlorination, hygiene messaging and hygiene kit ownership; however, a review of our technical practice is needed in order to maintain safe FRC levels in drinking water in households, particularly when water is collected from multiple sources, stored and mixed with older water.