• Highly targeted spatiotemporal interventions against cholera epidemics, 2000–19: a scoping review

      Ratnayake, R; Finger, F; Azman, AS; Lantagne, D; Funk, S; Edmunds, WJ; Checchi, F (Elsevier, 2020-10-20)
      Globally, cholera epidemics continue to challenge disease control. Although mass campaigns covering large populations are commonly used to control cholera, spatial targeting of case households and their radius is emerging as a potentially efficient strategy. We did a Scoping Review to investigate the effectiveness of interventions delivered through case-area targeted intervention, its optimal spatiotemporal scale, and its effectiveness in reducing transmission. 53 articles were retrieved. We found that antibiotic chemoprophylaxis, point-of-use water treatment, and hygiene promotion can rapidly reduce household transmission, and single-dose vaccination can extend the duration of protection within the radius of households. Evidence supports a high-risk spatiotemporal zone of 100 m around case households, for 7 days. Two evaluations separately showed reductions in household transmission when targeting case households, and in size and duration of case clusters when targeting radii. Although case-area targeted intervention shows promise for outbreak control, it is critically dependent on early detection capacity and requires prospective evaluation of intervention packages.
    • Successive epidemic waves of cholera in South Sudan between 2014 and 2017: a descriptive epidemiological study

      Jones, FK; Wamala, JF; Rumunu, J; Mawien, PN; Kol, MT; Wohl, S; Deng, L; Pezzoli, L; Omar, LH; Lessler, J; et al. (Elsevier, 2020-12-01)
      Background Between 2014 and 2017, successive cholera epidemics occurred in South Sudan within the context of civil war, population displacement, flooding, and drought. We aim to describe the spatiotemporal and molecular features of the three distinct epidemic waves and explore the role of vaccination campaigns, precipitation, and population movement in shaping cholera spread in this complex setting. Methods In this descriptive epidemiological study, we analysed cholera linelist data to describe the spatiotemporal progression of the epidemics. We placed whole-genome sequence data from pandemic Vibrio cholerae collected throughout these epidemics into the global phylogenetic context. Using whole-genome sequence data in combination with other molecular attributes, we characterise the relatedness of strains circulating in each wave and the region. We investigated the association of rainfall and the instantaneous basic reproduction number using distributed lag non-linear models, compared county-level attack rates between those with early and late reactive vaccination campaigns, and explored the consistency of the spatial patterns of displacement and suspected cholera case reports. Findings The 2014 (6389 cases) and 2015 (1818 cases) cholera epidemics in South Sudan remained spatially limited whereas the 2016–17 epidemic (20 438 cases) spread among settlements along the Nile river. Initial cases of each epidemic were reported in or around Juba soon after the start of the rainy season, but we found no evidence that rainfall modulated transmission during each epidemic. All isolates analysed had similar genotypic and phenotypic characteristics, closely related to sequences from Uganda and Democratic Republic of the Congo. Large-scale population movements between counties of South Sudan with cholera outbreaks were consistent with the spatial distribution of cases. 21 of 26 vaccination campaigns occurred during or after the county-level epidemic peak. Counties vaccinated on or after the peak incidence week had 2·2 times (95% CI 2·1–2·3) higher attack rates than those where vaccination occurred before the peak. Interpretation Pandemic V cholerae of the same clonal origin was isolated throughout the study period despite interepidemic periods of no reported cases. Although the complex emergency in South Sudan probably shaped some of the observed spatial and temporal patterns of cases, the full scope of transmission determinants remains unclear. Timely and well targeted use of vaccines can reduce the burden of cholera; however, rapid vaccine deployment in complex emergencies remains challenging.