• Immunogenicity and safety of fractional doses of yellow fever vaccines: a randomised, double-blind, non-inferiority trial

      Juan-Giner, A; Kimathi, D; Grantz, KH; Hamaluba, M; Kazooba, P; Njugana, P; Fall, G; Dia, M; Bob, NS; Monath, TP; et al. (Elsevier, 2021-01-09)
      Background Stocks of yellow fever vaccine are insufficient to cover exceptional demands for outbreak response. Fractional dosing has shown efficacy, but evidence is limited to the 17DD substrain vaccine. We assessed the immunogenicity and safety of one-fifth fractional dose compared with standard dose of four WHO-prequalified yellow fever vaccines produced from three substrains. Methods We did this randomised, double-blind, non-inferiority trial at research centres in Mbarara, Uganda, and Kilifi, Kenya. Eligible participants were aged 18–59 years, had no contraindications for vaccination, were not pregnant or lactating, had no history of yellow fever vaccination or infection, and did not require yellow fever vaccination for travel. Eligible participants were recruited from communities and randomly assigned to one of eight groups, corresponding to the four vaccines at standard or fractional dose. The vaccine was administered subcutaneously by nurses who were not masked to treatment, but participants and other study personnel were masked to vaccine allocation. The primary outcome was proportion of participants with seroconversion 28 days after vaccination. Seroconversion was defined as post-vaccination neutralising antibody titres at least 4 times pre-vaccination measurement measured by 50% plaque reduction neutralisation test (PRNT50). We defined non-inferiority as less than 10% decrease in seroconversion in fractional compared with standard dose groups 28 days after vaccination. The primary outcome was measured in the per-protocol population, and safety analyses included all vaccinated participants. This trial is registered with ClinicalTrials.gov, NCT02991495. Findings Between Nov 6, 2017, and Feb 21, 2018, 1029 participants were assessed for inclusion. 69 people were ineligible, and 960 participants were enrolled and randomly assigned to vaccine manufacturer and dose (120 to Bio-Manguinhos-Fiocruz standard dose, 120 to Bio-Manguinhos-Fiocruz fractional dose, 120 to Chumakov Institute of Poliomyelitis and Viral Encephalitides standard dose, 120 to Chumakov Institute of Poliomyelitis and Viral Encephalitides fractional dose, 120 to Institut Pasteur Dakar standard dose, 120 to Institut Pasteur Dakar fractional dose, 120 to Sanofi Pasteur standard dose, and 120 to Sanofi Pasteur fractional dose). 49 participants had detectable PRNT50 at baseline and 11 had missing PRNT50 results at baseline or 28 days. 900 were included in the per-protocol analysis. 959 participants were included in the safety analysis. The absolute difference in seroconversion between fractional and standard doses by vaccine was 1·71% (95% CI −2·60 to 5·28) for Bio-Manguinhos-Fiocruz, −0·90% (–4·24 to 3·13) for Chumakov Institute of Poliomyelitis and Viral Encephalitides, 1·82% (–2·75 to 5·39) for Institut Pasteur Dakar, and 0·0% (–3·32 to 3·29) for Sanofi Pasteur. Fractional doses from all four vaccines met the non-inferiority criterion. The most common treatment-related adverse events were headache (22·2%), fatigue (13·7%), myalgia (13·3%) and self-reported fever (9·0%). There were no study-vaccine related serious adverse events. Interpretation Fractional doses of all WHO-prequalified yellow fever vaccines were non-inferior to the standard dose in inducing seroconversion 28 days after vaccination, with no major safety concerns. These results support the use of fractional dosage in the general adult population for outbreak response in situations of vaccine shortage.
    • Randomized, double-blinded, controlled non-inferiority trials evaluating the immunogenicity and safety of fractional doses of Yellow Fever vaccines in Kenya and Uganda

      Grais, RF; Warimwe, G; Kimathi, D; Juan, A; Bejon, P; epicentre (F1000 Research Ltd, 2019-11-20)
      Introduction: Yellow fever is endemic in specific regions of sub-Saharan Africa and the Americas, with recent epidemics occurring on both continents. The yellow fever vaccine is effective, affordable and safe, providing life-long immunity following a single dose vaccination. However, the vaccine production process is slow and cannot be readily scaled up during epidemics. This has led the World Health Organization (WHO) to recommend the use of fractional doses as a dose-sparing strategy during epidemics, but there are no randomized controlled trials of fractional yellow fever vaccine doses in Africa. Methods and analysis: We will recruit healthy adult volunteers, adults living with HIV, and children to a series of randomized controlled trials aiming to determine the immunogenicity and safety of fractional vaccine doses in comparison to the standard vaccine dose. The trials will be conducted across two sites; Kilifi, Kenya and Mbarara, Uganda. Recruited participants will be randomized to receive fractional or standard doses of yellow fever vaccine. Scheduled visits will include blood collection for serum and peripheral blood mononuclear cells (PBMCs) before vaccination and on various days – up to 2 years – post-vaccination. The primary outcome is the rate of seroconversion as measured by the plaque reduction neutralization test (PRNT50) at 28 days post-vaccination. Secondary outcomes include antibody titre changes, longevity of the immune response, safety assessment using clinical data, the nature and magnitude of the cellular immune response and post-vaccination control of viremia by vaccine dose. Ethics and dissemination: The clinical trial protocols have received approval from the relevant institutional ethics and regulatory review committees in Kenya and Uganda, and the WHO Ethics Review Committee. The research findings will be disseminated through open-access publications and presented at relevant conferences and workshops.