• The impact of reactive mass vaccination campaigns on measles outbreaks in the Katanga region, Democratic Republic of Congo

      Funk, S; Takahashi, S; Hellewell, J; Gadroen, K; Carrion-Martin, I; van Lenthe, M; Rivette, K; Dietrich, S; Edmunds, WJ; Siddiqui, MR; et al. (2019-08-17)
      The Katanga region in the Democratic Republic of Congo (DRC) has been struck by repeated epidemics of measles, with large outbreaks occurring in 2010–13 and 2015. In many of the affected health zones, reactive mass vaccination campaigns were conducted in response to the outbreaks. Here, we attempted to determine how effective the vaccination campaigns in 2015 were in curtailing the ongoing outbreak. We further sought to establish whether the risk of large measles outbreaks in different health zones could have been determined in advance to help prioritise areas for vaccination campaign and speed up the response. In doing so, we first attempted to identify factors that could have been used in 2015 to predict in which health zones the greatest outbreaks would occur. Administrative vaccination coverage was not a good predictor of the size of outbreaks in different health zones. Vaccination coverage derived from surveys, on the other hand, appeared to give more reliable estimates of health zones of low vaccination coverage and, consequently, large outbreaks. On a coarser geographical scale, the provinces most affected in 2015 could be predicted from the outbreak sizes in 2010–13. This, combined with the fact that the vast majority of reported cases were in under-5 year olds, would suggest that there are systematic issues of undervaccination. If this was to continue, outbreaks would be expected to continue to occur in the affected health zones at regular intervals, mostly concentrated in under-5 year olds. We further used a model of measles transmission to estimate the impact of the vaccination campaigns, by first fitting a model to the data including the campaigns and then re-running this without vaccination. We estimated the reactive campaigns to have reduced the size of the overall outbreak by approximately 21,000 (IQR: 16,000–27,000; 95% CI: 8300–38,000) cases. There was considerable heterogeneity in the impact of campaigns, with campaigns started earlier after the start of an outbreak being more impactful. Taken together, these findings suggest that while a strong routine vaccination regime remains the most effective means of measles control, it might be possible to improve the effectiveness of reactive campaigns by considering predictive factors to trigger a more targeted vaccination response.
    • Pneumococcal conjugate vaccine use during humanitarian crises

      van Zandvoort, K; Checchi, F; Diggle, E; Eggo, RM; Gadroen, K; Mulholland, K; McGowan, CR; le Polain de Waroux, O; Rao, VB; Satzke, C; et al. (Elsevier, 2019-09-24)
      Streptococcus pneumoniae is a common human commensal that causes a sizeable part of the overall childhood mortality in low income settings. Populations affected by humanitarian crises are at especially high risk, because a multitude of risk factors that are enhanced during crises increase pneumococcal transmission and disease severity. Pneumococcal conjugate vaccines (PCVs) provide effective protection and have been introduced into the majority of routine childhood immunisation programmes globally, though several barriers have hitherto limited their uptake during humanitarian crises. When PCV coverage cannot be sustained during crises or when PCV has not been part of routine programmes, mass vaccination campaigns offer a quick acting and programmatically feasible bridging solution until services can be restored. However, we currently face a paucity of evidence on which to base the structure of such campaigns. We believe that, now that PCV can be procured at a substantially reduced price through the Humanitarian Mechanism, this lack of information is a remaining hurdle to PCV use in humanitarian crises. Considering the difficulties in conducting research in crises, we propose an evidence generation pathway consisting of primary data collection in combination with mathematical modelling followed by quasi-experimental evaluation of a PCV intervention, which can inform on optimal vaccination strategies that consider age targeting, dosing regimens and impact duration.