• Adherence and population pharmacokinetic properties of amodiaquine when used for seasonal malaria chemoprevention in African children

      Ding, J; Coldiron, ME; Assao, B; Guindo, O; Blessborn, D; Winterberg, M; Grais, RF; Koscalova, A; Langendorf, C; Tarning, J (American Society for Clinical Pharmacology and Therapeutics, 2019-10-25)
      Poor adherence to seasonal malaria chemoprevention (SMC) might affect the protective effectiveness of SMC. Here, we evaluated the population pharmacokinetic properties of amodiaquine and its active metabolite, desethylamodiaquine, in children receiving SMC under directly‐observed ideal conditions (n=136), and the adherence of SMC at an implementation phase in children participating in a case‐control study to evaluate SMC effectiveness (n=869). Amodiaquine and desethylamodiaquine concentration‐time profiles were described simultaneously by two‐compartment and three‐compartment disposition models, respectively. The developed methodology to evaluate adherence showed a sensitivity of 65‐71% when the first dose of SMC was directly observed and 71‐73% when no doses were observed in a routine programmatic setting. Adherence simulations and measured desethylamodiaquine concentrations in the case‐control children showed complete adherence (all doses taken) in less than 20% of children. This result suggests that more efforts are needed urgently to improve the adherence to SMC among children in this area.
    • Clinical diagnostic evaluation of HRP2 and pLDH-based rapid diagnostic tests for malaria in an area receiving seasonal malaria chemoprevention in Niger

      Coldiron, M; Assao, B; Langendorf, C; Sayinzoga-Makombe, N; de la Tour, R; Piriou, E; Ciglenecki, I; Mumina, A; Guindo, O; Page, A-L; et al. (Springer Science and Business Media LLC, 2019-12-26)
      Background Rapid diagnostic tests (RDT) for malaria are common, but their performance varies. Tests using histidine-rich protein 2 (HRP2) antigen are most common, and many have high sensitivity. HRP2 tests can remain positive for weeks after treatment, limiting their specificity and usefulness in high-transmission settings. Tests using Plasmodium lactate dehydrogenase (pLDH) have been less widely used but have higher specificity, mostly due to a much shorter time to become negative. Methods A prospective, health centre-based, diagnostic evaluation of two malaria RDTs was performed in rural Niger during the high malaria transmission season (3–28 October, 2017) and during the low transmission season (28 January–31 March, 2018). All children under 5 years of age presenting with fever (axillary temperature > 37.5 °C) or history of fever in the previous 24 h were eligible. Capillary blood was collected by finger prick. The SD Bioline HRP2 (catalog: 05FK50) and the CareStart pLDH(pan) (catalog: RMNM-02571) were performed in parallel, and thick and thin smears were prepared. Microscopy was performed at Epicentre, Maradi, Niger, with external quality control. The target sample size was 279 children with microscopy-confirmed malaria during each transmission season. Results In the high season, the sensitivity of both tests was estimated at > 99%, but the specificity of both tests was lower: 58.0% (95% CI 52.1–63.8) for the pLDH test and 57.4% (95% CI 51.5–63.1) for the HRP2 test. The positive predictive value was 66.3% (95% CI 61.1–71.2) for both tests. In the low season, the sensitivity of both tests dropped: 91.0% (95% CI 85.3–95.0) for the pLDH test and 85.8% (95% CI 79.3–90.9) for the HRP2 test. The positive predictive value remained low for both tests in the low season: 60.5% (95% CI 53.9–66.8) for the pLDH test and 61.9% (55.0–68.4) for the HRP2 test. Performance was similar across different production lots, gender, age of the children, and, during the high season, time since the most recent distribution of seasonal malaria chemoprevention. Conclusions The low specificity of the pLDH RDT in this setting was unexpected and is not easily explained. As the pLDH test continues to be introduced into new settings, the questions raised by this study will need to be addressed.
    • Clinical diagnostic evaluation of HRP2 and pLDH-based rapid diagnostic tests for malaria in an area receiving seasonal malaria chemoprevention in Niger.

      Coldiron, M; Assao, B; Langendorf, C; Sayinzoga-Makombe, N; Ciglenecki, I; de la Tour, R; Piriou, E; Bako, M; Mumina, A; Guindo, O; et al. (BioMed Central, 2019-12-26)
      BACKGROUND: Rapid diagnostic tests (RDT) for malaria are common, but their performance varies. Tests using histidine-rich protein 2 (HRP2) antigen are most common, and many have high sensitivity. HRP2 tests can remain positive for weeks after treatment, limiting their specificity and usefulness in high-transmission settings. Tests using Plasmodium lactate dehydrogenase (pLDH) have been less widely used but have higher specificity, mostly due to a much shorter time to become negative. METHODS: A prospective, health centre-based, diagnostic evaluation of two malaria RDTs was performed in rural Niger during the high malaria transmission season (3-28 October, 2017) and during the low transmission season (28 January-31 March, 2018). All children under 5 years of age presenting with fever (axillary temperature > 37.5 °C) or history of fever in the previous 24 h were eligible. Capillary blood was collected by finger prick. The SD Bioline HRP2 (catalog: 05FK50) and the CareStart pLDH(pan) (catalog: RMNM-02571) were performed in parallel, and thick and thin smears were prepared. Microscopy was performed at Epicentre, Maradi, Niger, with external quality control. The target sample size was 279 children with microscopy-confirmed malaria during each transmission season. RESULTS: In the high season, the sensitivity of both tests was estimated at > 99%, but the specificity of both tests was lower: 58.0% (95% CI 52.1-63.8) for the pLDH test and 57.4% (95% CI 51.5-63.1) for the HRP2 test. The positive predictive value was 66.3% (95% CI 61.1-71.2) for both tests. In the low season, the sensitivity of both tests dropped: 91.0% (95% CI 85.3-95.0) for the pLDH test and 85.8% (95% CI 79.3-90.9) for the HRP2 test. The positive predictive value remained low for both tests in the low season: 60.5% (95% CI 53.9-66.8) for the pLDH test and 61.9% (55.0-68.4) for the HRP2 test. Performance was similar across different production lots, gender, age of the children, and, during the high season, time since the most recent distribution of seasonal malaria chemoprevention. CONCLUSIONS: The low specificity of the pLDH RDT in this setting was unexpected and is not easily explained. As the pLDH test continues to be introduced into new settings, the questions raised by this study will need to be addressed.
    • Intermittent Preventive Treatment for Malaria Among Children in a Refugee Camp in Northern Uganda: Lessons Learned

      Coldiron, M; Lasry, E; Bouhenia, M; Das, D; Okui, P; Nyehangane, D; Mwanga, J; Langendorf, C; Elder, G; Salumu, L; et al. (BioMed Central, 2017-05-23)
      Northern Uganda hosts a large population of refugees from South Sudan, and malaria is one of the major health problems in the area. In 2015, intermittent preventive treatment for malaria (IPTc) was implemented in two refugee camps among children aged 6 months to 14 years. Three distributions of dihydroartemisinin-piperaquine (DP) were conducted at 8-week intervals. The first dose was directly administered at IPTc distribution sites and the second and third doses were given to caregivers to administer at home. A multi-faceted evaluation was implemented, including coverage surveys, malaria prevalence surveys, reinforced surveillance, and pharmacovigilance. Programme coverage exceeded 90% during all three distributions with a total of 40,611 participants. Compared to same period during the previous year (only available data), the incidence of malaria in the target populations was reduced (IRR 0.73, 95% CI 0.69-0.77 among children under 5 years old; IRR 0.70, 95% CI 0.67-0.72 among children aged 5-14 years). Among those not targeted for intervention, the incidence between the 2 years increased (IRR 1.49, 95% CI 1.42-1.56). Cross-sectional surveys showed a prevalence of parasitaemia (microscopy or PCR) of 12.9-16.4% (95% CI 12.6-19.3) during the intervention, with the highest prevalence among children aged 5-14 years, but with a large increase 8 weeks after the final distribution. A total of 57 adverse events were reported during the intervention period, including one severe adverse event (death from varicella). Adverse events were of mild to moderate severity, and were mainly dermatologic and gastrointestinal. This is the first documentation of an IPTc programme in a refugee camp. The positive impact of DP on the incidence of malaria, together with its favourable safety profile, should lead to further use of IPTc in similar settings. Expanding coverage groups and decreasing intervals between distributions might provide more benefit, but would need to be balanced with the operational implications of a broader, more frequent distribution schedule.
    • Molecular markers of resistance to amodiaquine plus sulfadoxine-pyrimethamine in an area with seasonal malaria chemoprevention in south central Niger

      Grais, RF; Laminou, IM; Woi-Messe, L; Makarimi, R; Bouriema, SH; Langendorf, C; Amambua-Ngwa, A; D'Alessandro, U; Guérin, PJ; Fandeur, T; et al. (BioMed Central, 2018-02-27)
      In Niger, malaria transmission is markedly seasonal with most of the disease burden occurring in children during the rainy season. Seasonal malaria chemoprevention (SMC) with amodiaquine plus sulfadoxine-pyrimethamine (AQ + SP) is recommended in the country to be administered monthly just before and during the rainy season. Moreover, clinical decisions on use of SP for intermittent preventive treatment in pregnancy (IPTp) now depend upon the validated molecular markers for SP resistance in Plasmodium falciparum observed in the local parasite population. However, little is known about molecular markers of resistance for either SP or AQ in the south of Niger. To address this question, clinical samples which met clinical and biological criteria, were collected in Gabi, Madarounfa district, Maradi region, Niger in 2011-2012 (before SMC implementation). Molecular markers of resistance to pyrimethamine (pfdhfr), sulfadoxine (pfdhps) and amodiaquine (pfmdr1) were assessed by DNA sequencing.